864 research outputs found

    Focused ion beam processing to fabricate ohmic contact electrodes on a bismuth nanowire for Hall measurements

    Get PDF
    Ohmic contact electrodes for four-wire resistance and Hall measurements were fabricated on an individual single-crystal bismuth nanowire encapsulated in a cylindrical quartz template. Focused ion beam processing was utilized to expose the side surfaces of the bismuth nanowire in the template, and carbon and tungsten electrodes were deposited on the bismuth nanowire in situ to achieve electrical contacts. The temperature dependence of the four-wire resistance was successfully measured for the bismuth nanowire, and a difference between the resistivities of the two-wire and four-wire methods was observed. It was concluded that the two-wire method was unsuitable for estimation of the resistivity due to the influence of contact resistance, even if the magnitude of the bismuth nanowire resistance was greater than the kilo-ohm order. Furthermore, Hall measurement of a 4-μm-diameter bismuth microwire was also performed as a trial, and the evaluated temperature dependence of the carrier mobility was in agreement with that for bulk bismuth, which indicates that the carrier mobility was successfully measured using this technique. PACS: 81.07.G

    Environmental dependence of polycyclic aromatic hydrocarbon emission at z~0.8. Investigation by observing the RX J0152.7-1357 with AKARI

    Full text link
    We study the environmental dependence of the strength of polycyclic aromatic hydrocarbon (PAH) emission by AKARI observations of RX J0152.7-1357, a galaxy cluster at z=0.84. PAH emission reflects the physical conditions of galaxies and dominates 8 um luminosity (L8), which can directly be measured with the L15 band of AKARI. L8 to infrared luminosity (LIR) ratio is used as a tracer of the PAH strength. Both photometric and spectroscopic redshifts are applied to identify the cluster members. The L15-band-detected galaxies tend to reside in the outskirt of the cluster and have optically green colour, R-z'~ 1.2. We find no clear difference of the L8/LIR behaviour of galaxies in field and cluster environment. The L8/LIR of cluster galaxies decreases with specific-star-formation rate divided by that of main-sequence galaxies, and with LIR, consistent with the results for field galaxies. The relation between L8/LIR and LIR is between those at z=0 and z=2 in the literature. Our data also shows that starburst galaxies, which have lower L8/LIR than main-sequence, are located only in the outskirt of the cluster. All these findings extend previous studies, indicating that environment affects only the fraction of galaxy types and does not affect the L8/LIR behaviour of star-forming galaxies.Comment: 8 pages, 7 figures. Accepted for Publication in A&

    Hierarchical and Frequency-Aware Model Predictive Control for Bare-Metal Cloud Applications

    Get PDF
    Bare-metal cloud provides a dedicated set of physical machines (PMs) and enables both PMs and virtual machines (VMs) on the PMs to be scaled in/out dynamically. However, to increase efficiency of the resources and reduce violations of service level agreements (SLAs), resources need to be scaled quickly to adapt to workload changes, which results in high reconfiguration overhead, especially for the PMs. This paper proposes a hierarchical and frequency-aware auto-scaling based on Model Predictive Control, which enable us to achieve an optimal balance between resource efficiency and overhead. Moreover, when performing high-frequency resource control, the proposed technique improves the timing of reconfigurations for the PMs without increasing the number of them, while it increases the reallocations for the VMs to adjust the redundant capacity among the applications; this process improves the resource efficiency. Through trace-based numerical simulations, we demonstrate that when the control frequency is increased to 16 times per hour, the VM insufficiency causing SLA violations is reduced to a minimum of 0.1% per application without increasing the VM pool capacity

    Survival Strategy of <i>Escherichia coli</i> in Stationary Phase: Involvement of σE-Dependent Programmed Cell Death

    Get PDF
    In a natural habitat, microbes respond to alterations in the amounts of nutrients or to stresses such as osmotic stress and stresses caused by low or high pH, salt, heat, and antibiotics by changing their mode for proliferation or survival. Similarly, Escherichia coli cells in a test tube change the growth mode according to environmental conditions when they enter a stationary phase. Until a sufficient supply of nutrients, the organism survives under such stressful and nutrient-limited conditions by altering gene expression to be more protective against such conditions. The definite trigger of the onset of stationary phase is still unclear, but several lines of evidence indicate that the regulation mechanism is very complicated and involves several transcriptional factors including alternative sigma factors, σE and σS. In addition, E. coli cells behave as a community of species and give rise to programmed cell death (PCD) for ensuring survival by controlling the cell number and supplying nutrients to sibling cells in long-term stationary phase (LTSP). The main PCD is probably performed by σE in E. coli. In this chapter, physiological functions of σE and PCD are introduced and reviewed and their possible involvement in survival mechanisms in stationary phase, especially LTSP, is shown
    • …
    corecore